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Abstract

Why are cities in America struggling to supply housing at affordable prices? The conven-

tional view is that housing regulations restrict the expansion of big, high-productivity cities. I

document how shifting demand within these cities towards costly margins of urban growth —

infill and redevelopment, as opposed to sprawl— has been central to rising unaffordability since

at least 1990. I measure this by combining satellite imagery, digitized building footprints and

Census data to track development and redevelopment at 30x30 meter resolution nationwide.

Big cities increasingly relied on costly infill and redevelopment as commuting speed stagna-

tion and the revival of urban amenities concentrated demand in already-urbanized areas. A

quantitative spatial model reveals that relaxing zoning regulations to small-city levels —mostly

easing suburban expansion— would only modestly increase big-city populations, since they

would still be bound by the costs of redevelopment in dense areas where demand concentrates.
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1 Introduction

Over the past several decades, housing prices have exploded in the United States’s largest and

most productive cities, sparking an affordability crisis. For many years, the literature has argued

this is the result of city-wide constraints to the supply of urban land, namely a combination of

regulatory and geographic barriers to development1. According to this view, the superstar metro

areas that drive much of the country’s productivity growth simply have too many regulatory bar-

riers to the supply of urban land, thus converting most of their productivity gains into higher

housing prices and constraining the country’s economy as a whole. However, this focus on ag-

gregate constraints obscures the internal geography of demand and supply, and its importance

for the evolution of prices.

Cities don’t just expand into new land, they also infill empty gaps and redevelop existing

structures depending on household demand. Housing prices reflect the relative demand for dif-

ferent areas in the city, because infill and redevelopment are inherently costlier than greenfield

expansion. Empirically, areas where land is already occupied by urban structures have low sup-

ply elasticities regardless of regulations (Baum-Snow and Han, 2024). This reflects the high fixed

costs of redevelopment: the process of purchasing old buildings, demolition, and constructing

larger structures that will yield higher rents constrains how much this margin can respond (Rol-

let, 2025). When demand concentrates in parts of the city that are already urbanized, these high

fixed costs can make housing very unaffordable even without changes in regulations or a short-

age of developable land in the fringe. Moreover, each new wave of infill and redevelopment in

these areas makes subsequent local development more costly, compounding the effect.

This paper uses an unprecedented combination of detailed spatial data over the 1990-2020

period to document how those two forces — the concentration of demand in already urbanized

areas of cities, and the increasingly constrained supply resulting from further infill and redevel-

opment — have become an increasingly important driver of housing supply constraints in the

United States. Demand concentration partly reflected decades of stagnant commuting speeds

(Couture et al., 2018), which raised the cost of further suburban expansion, and the revival of

central-city amenities (Couture et al., 2024; Couture and Handbury, 2020). Because this concen-

tration of demand was unique to big cities, it made them increasingly unaffordable compared to

smaller cities, significantly amplifying the effect that regulatory differences would have had on

their own.
1Some notable examples include Duranton and Puga (2023), Ganong and Shoag (2017), Glaeser and Gyourko (2025),

Glaeser et al. (2005), and Hsieh and Moretti (2019)

2



The first contribution in this paper is providing a comprehensive account of urban growth

across the different margins of development. To do so, I combine gridded land cover data from

the Annual NLCD (U.S. Geological Survey, 2025) with digitized footprints for every building

in the United States and housing data geocoded to Census Block Groups. The result is a panel

dataset that tracks the evolution of urban structures, building footprints and housing units at

30x30 meter resolution from 1990 to 2020. Thanks to this dataset, I can estimate for the first time

in the literature how much of the new housing supply that was constructed in each decade was

provided by extending the fringes of cities, or by infill and redevelopment in already urbanized

neighborhoods2.

With the new dataset in hand, I document three key empirical facts about urban development

and housing costs since 1990. First, larger cities already relied more heavily on the costlier inten-

sive margins in the 1990s, housing more of their population in dense neighborhoods and building

new units disproportionately through infill and redevelopment. Second, this reliance intensified

dramatically over three decades: big cities turned increasingly to infill and redevelopment while

small cities continued sprawling, creating a sharp divergence in development patterns. Third,

housing cost divergence mirrored this spatial reallocation—all of the price divergence across met-

ros occurred in big cities’ downtowns and dense residential areas, while fringe areas showed no

divergence. The post-1990 big-city premium was really a rising premium for the densest neigh-

borhoods within those cities.

To understand these results, I develop a conceptual framework that relates the demand for

housing within metro areas to sprawl, infill, redevelopment, and the evolution of housing prices.

I build a model combining elements from the monocentric Alonso-Muth-Mills model (Alonso,

1964; Mills, 1967; Muth, 1969) with quantitative spatial models (Redding and Rossi-Hansberg,

2017), where the three margins of development happen endogenously in response to demand. I

derive conditions for the endogenous boundaries at which each margin of development is opti-

mal, and for how changes in the relative attractiveness of the Downtown, Residential and Fringe

areas of the city affect prices and quantities in equilibrium.

The model predicts two reasons why demand would concentrate in already-developed places.

Because transportation is costly, cities with larger populations extend further out from their cen-

ter, but also feature a larger share of housing stock built at the costlier Residential and Downtown

densities—reflecting greater capitalized commuter savings in central locations. When they build

2Baum-Snow and Han (2024) used data for about half of the Census Tracts in the nation in the 2000-2010 period and
documented how redevelopment makes up a sizeable share of new housing supply, and how Census Tracts that require
redevelopment are more supply-inelastic. However, they did not document how the reliance on this margin varies across
cities or how it has changed over time.
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new housing, a larger fraction is built through infill and redevelopment, so they are more supply-

inelastic. If transportation speeds stagnate, cities redevelop more and more and become supply-

inelastic as they grow. This is further amplified if residential amenities become more attractive at

the urban core: Infill and redevelopment become a larger share of new construction, at the cost

of disproportionate price growth in these areas and an overall decline in the city-wide supply

elasticity.

I calibrate the model to the U.S. urban system, keeping into account the role of regulations

and geographic constraints. Regulations make the same margin of development —for example,

fringe expansion— costlier in some cities than others, and I incorporate them through the housing

supply elasticiy estimates from Baum-Snow and Han (2024). Geographic constraints are modeled

as in Duranton and Puga (2023) and Saiz (2010): mountains and bodies of water force devel-

opers to build around them, so the city has to extend further out to obtain the same amount of

developable land. On the demand side, the evolution of wages, commuting costs and housing

costs identifies the residential amenity gradient of each city. In line with findings by Baum-Snow

and Hartley (2020), Couture et al. (2024), Couture and Handbury (2020), Diamond (2016), and

Moreno-Maldonado and Santamaría (2025), my model indicates that central city amenities in-

creased substantially in big cities, reflecting how urban consumption is an increasingly important

driver of residential choice3.

I first use the model to quantify how the additional demand concentration since 1990 con-

tributed to rising housing costs. To do so, I decompose the changes in demand determinants

into within-city and across-city changes, by adjusting values of wages, commuting speeds, and

amenities and simulating counterfactual equilibria. The additional within-city concentration of

demand —within-city changes in amenities, and the growth in commuting times— contributed

to 23% of the growth in housing expenditures4 between 1990 and 2020. Changes in wages across

cities also contributed to rising housing costs, by making big, supply-inelastic cities more attrac-

tive, contributing to 14% of the growth in housing expenditures. Overall, the combination of all

of these changes in demand contributed to 35% of the growth in housing expenditures between

1990 and 20205.
3I measure amenities as an unobserved fundamental that is recovered from the location choices of households, as

is standard in the urban economics literature. The literature on U.S. urban revival has identified this revival of urban
amenities as an equilibrium outcome from young, high-income households increasing their presence downtown and
creating demand for consumption amenities — restaurants, shops, entertainment —, which in turn attracts more young,
high-income households. Some of the deeper structural drivers of this return are the growth in income inequality, which
allows high-income households to out-bid low-income households downtown (Couture et al., 2024), and the delayed
child-bearing by high-income households, which makes urban amenities more attractive to them (Moreno-Maldonado
and Santamaría, 2025). In this study, I take the amenities that I recover from the data as exogenous fundamentals that
drive the aggregate location choices of households, and I interpret them as being the outcome of this process.

4Measured as the the average monthly rent in the city divided by the city’s average monthly wage
5Note that because this decomposition is produced by computing alternative equilibria, the decomposition is not nec-

essarily linear
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Finally, I use the model to quantify what would be the effect of zoning relaxation, taking

into account the internal geography of demand and supply. I simulate a counterfactual econ-

omy where I relax housing regulations in seven large, highly regulated cities6 to the levels of the

median U.S. city. I also run the same counterfactual in a naive model that treats cities as homoge-

neous units. The results indicate that, while zoning relaxation would allow more population into

big cities at lower prices, the effect is very muted compared to previous claims in the literature

or my own naive model. Relaxing zoning regulations in these seven cities would have increased

their 1990-2020 population growth rate by 12%, allowing them to host 2.7% more population

by 2020, much less than the increase predicted by the naive model and by extant literature like

Duranton and Puga (2023) and Hsieh and Moretti (2019). The reason is that, even with relaxed

regulations that would mostly facilitate fringe expansion, big cities would still face very intense

demand for already-urbanized areas where the supply constraints are not regulatory in nature.

To conclude, the results in this paper illustrate how the internal geography of demand and

supply within cities is key to understanding how much they can grow at affordable prices. Big

cities in the United States increasingly struggle to provide affordable housing, not just because

of regulations, but because the parts of these cities that attract households are simply too heavily

developed to provide more housing easily. As big cities concentrate a growing fraction of produc-

tivity growth in advanced economies (Moretti, 2012), this poses a fundamental challenge. While

easing regulations would help somewhat, policymakers may need to consider complementary

approaches that reduce the spatial concentration of demand itself. Technologies like remote work

show early promise in this direction (Delventhal and Parkhomenko, 2024; Delventhal et al., 2022),

as does strengthening alternatives to superstar cities through targeted infrastructure investment

or place-based policies.

1.1 Related literature

This paper contributes to several strands of literature. First, it contributes to the literature on

housing constraints. Part of this literature has focused on measuring housing constraints at the

city or microgeographic level (Baum-Snow and Han, 2024; Gyourko et al., 2008; Rollet, 2025;

Saiz, 2010), while another strand has focused on measuring the consequences of these constraints

for housing prices, migration to big cities, or aggregate productivity (Duranton and Puga, 2023;

Ganong and Shoag, 2017; Glaeser et al., 2005; Hsieh and Moretti, 2019). This paper showcases

how the internal demand within cities is a first order driver of prices due to the different costs

of each margin of urban growth, and how this channel has become increasingly important for

6New York, Los Angeles, Washington DC, San Francisco, Boston, Seattle, San Diego
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explaining housing unaffordability in the U.S.

This paper also contributes to the study of the tradeoff of city size. Many works like Glaeser

et al. (1992) have studied the benefits of big cities in terms of productivity, while more recent work

like Combes et al. (2019) and Duranton and Puga (2023) has attempted to quantify the costs of

agglomeration and thus find the optimal tradeoff. This paper provides evidence for a previously

underappreciated cost of agglomeration: as cities grow, they become more dependent on costlier

margins of development, which makes housing supply more inelastic and prices more sensitive

to demand shocks.

A third strand of the literature has studied the internal structure of cities. Starting with the

monocentric Alonso-Muth-Mills model (Alonso, 1964; Mills, 1967; Muth, 1969) up to the recent

wave of tractable quantitative spatial models (Ahlfeldt et al., 2015; Heblich et al., 2020; Tsivani-

dis, 2023), this literature has studied how transportation costs, amenities, and productivity shape

where households and firms locate within cities. This paper contributes by documenting how

cities adapt their internal structure through different development margins—greenfield expan-

sion, infill, and redevelopment—and by quantifying the rising frictions that constrain this adap-

tation.

More particular to the U.S. context, I contribute to the literature on urban decline and revival

in the United States. A large literature has documented the process of central city decline and

suburbanization that U.S. cities experienced after World War 2 (Baum-Snow, 2007; Boustan, 2010),

followed by a revival of central cities since the 1990s (Baum-Snow, 2020; Couture et al., 2024;

Couture and Handbury, 2020). While the literature had recognized the revival of demand for

central cities, it assumed that the overall process of suburbanization continued apace. Thanks to

the novel use of far more detailed data, I show that, in fact, the process of U.S. suburbanization

has been slowing down substantially since at least the 1990s.

Finally, I contribute to the use of remotely sensed and geospatial data in economics. Remotely

sensed data has proven useful in many settings where administrative data lacks the necessary res-

olution or does not exist at all (Donaldson and Storeygard, 2016). In urban economics, Burchfield

et al. (2006) pioneered the use of satellite imagery to study aspects of urban growth, followed by

other prominent examples like Baum-Snow and Han (2024), Harari (2020), and Saiz (2010). With

the construction of my dataset, I demonstrate how the careful combination of remotely sensed

and administrative data can overcome the limitations of each individual source and produce data

that is more than the sum of its parts. This dataset can prove useful for many other applications in

the U.S. setting, and the same methodology can be applied to many other settings where similar
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data sources exist.

The rest of the paper is organized as follows. In section 2, I describe the construction of the

dataset and other choices regarding the measurement of urbanized areas. In section 3, I present

and rationalize the main empirical findings. Section 4 presents the quantitative model and its

calibration to the U.S. urban system. Section 5 presents results from the calibrated model and the

counterfactual experiments. Section 6 concludes.

2 A dataset to track all margins of urban growth

Distinguishing sprawl from infill and redevelopment requires data that tracks both where cities

expand and how intensively they develop existing areas. To achieve comprehensive geographic

coverage over three decades, I turn to remotely sensed data. I construct a 30×30 meter gridded

panel from 1990 to 2020 by combining the recently released Annual NLCD—which for the first

time provides land cover data back to 1990—with detailed building footprints and Census hous-

ing counts. I combine these sources to isolate building footprints from other artificial structures

and to allocate housing units within Census Block Groups to individual grid cells. From this grid-

ded foundation, I then apply a density-based statistical method to delineate the evolving physical

boundaries of urban areas, producing dynamic measures of sprawl, infill, and redevelopment that

are not constrained by fixed administrative boundaries.

2.1 Constructing the gridded dataset

The main dataset I construct consists of a series of gridded maps, each containing 9 billion 30x30

meter cells that track the number of housing units, the fraction of each cell covered by buildings,

the fraction of each cell covered by paved surfaces, and geographic features such as the cell’s

elevation or the presence of water bodies. As explained in the introduction, I do this by carefully

merging a series of geospatial datasets from the U.S. Geological Survey, Overture Maps, and the

Census, each containing complementary pieces of information.

The point of departure for the data construction is the new generation of the National Land

Cover Database (NLCD) (U.S. Geological Survey, 2025). The NLCD is a fine-resolution (30x30

meter cells) dataset that describes land cover and land use for the entirety of the United States.

One layer of this dataset classifies these cells in major land use and cover categories (the Land

Cover layer), while another classifies cells by the percentage of their surface that is covered by

buildings and / or paved surfaces (the percentage imperviousness layer). Previous versions of the

NLCD have been used in prominent papers in economics (Baum-Snow and Han, 2024; Burchfield

7



et al., 2006; Saiz, 2010), but until very recently the coverage of the NLCD panel only went back to

20017 (Yang et al., 2018). The new release of the NLCD updated its methodology and expanded

coverage back to 1985, so that now it is possible to track the evolution of land use for more than

three decades.

It is important to briefly explain how the NLCD is built, because its production method de-

termines what it can and cannot identify reliably. The NLCD is produced by the U.S. Geologi-

cal Survey from the Landsat Analysis Ready Data (ARD) archive (Earth Resources Observation

and Science (EROS) Center, 2017), a multi-decadal stack of multispectral imagery at a common

30 × 30 meter resolution covering the conterminous United States. The latest release exploits the

full time series with machine-learning and temporal-classification methods. As a result, it excels

at detecting transitions between natural and artificial cover—that is, distinguishing urbanized

(impervious) from non-urban land. However, at 30 meters the spectral and temporal signatures

of roofs and other impervious surfaces are too similar for the NLCD to reliably separate building

footprints from paved surfaces such as roads, parking lots, or port facilities.

Given this limitation, I construct a panel of building footprints by combining the NLCD’s time

series on imperviousness with a high-coverage cross-sectional map of building polygons circa

2024. Specifically, I use changes over time in the NLCD percentage imperviousness to time the

emergence of built cover within each 30 × 30 meter cell, while using the cross-sectional poly-

gons to identify which impervious areas are buildings. The cross-section comes from Overture

Maps and includes footprints for roughly 183 million U.S. buildings, aggregating community-

contributed sources (OpenStreetMap, Esri), national and municipal datasets, and machine-learning

roofprints from Google and Microsoft. This approach yields a temporally resolved building layer

that I use both to delineate urbanized areas (Section 2.2) and to allocate housing units within block

groups.

The way I trace the evolution of building footprints builds on two simple ideas. The first is

that the percentage of a cell that is covered by artificial surfaces that is not covered by buildings

is covered by paved surfaces, such as roads or parking lots. The second is that, once a road

segment is laid out, it is very unlikely to be destroyed (Barrington-Leigh and Millard-Ball, 2015).

For the year 2023, I can obtain the percentage of a 30x30 meter cell that is covered by asphalt

by substracting the percentage of the cell that is covered by buildings from the total area of the

cell that is covered by artificial surfaces (impervious layer). Then, I trace changes in the asphalt

content of each cell backwards in time, using the percentage imperviousness layer for each year. If

7The original release of the NLCD (Vogelmann et al., 2001) was representative of 1992, but it was a one-off release that
was not comparable to later versions of the dataset.
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(a) New York MSA

(b) San Francisco MSA

Figure 1: An artistic rendition of the data for the New York and San Francisco Metropolitan Statisti-
cal Areas (Panels (a) and (b) respectively). Each panel represents the state of each MSA as they were
in 1990. The base color layer is composited from 1990-vintage Landsat satellite imagery. The lilac
overlay represents stands for built-up or paved pixels, with darker colors representing more inten-
sity. The vertical “towers” represent the number of housing units in each 30x30 meter cell in 1990,
with taller elevation representing more housing units. Terrain elevation is exxaggerated for visual
effect.
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we assume that asphalt does not get destroyed, then, ∀t ∈ {1990, 2000, 2010, 2020} :

f ootprintst = max{impervioust − roads2023, 0} · 1 ( f ootprints2023 > 0)

Once this work is done, I have a gridded panel which isolates the percentage of each cell that

is covered by buildings. The next step is to use these buildings to pinpoint the location of housing

units. I obtain tabulations of housing unit counts from the Census at the level of 2010-vintage

Census Block Groups, as well as boundary polygons for those Block Groups from the NHGIS8

(Manson et al., 2023). Knowing the number of housing units within the geometric boundaries

of the Block Group, and the extent of building footprints for every 30x30 meter cell within those

boundaries, I attribute housing units to each cell proportionally to its building footprint.

The resulting dataset is a panel with four layers for each decadal year between 1990 and

2020: land cover categories, percentage imperviousness (percentage of the cell that is covered by

buildings or paved surfaces), building footprints (percentage of the cell covered by buildings)

and housing units (count of housing units attributed to the cell). Additionally, I download and

reproject the National Elevation Map to the same dimensions as the rest of the data, and I com-

pute measures of slope and terrain ruggedness. Figure 1 showcases the merged dataset visually

zoomed in to the New York and San Francisco metro areas as they were in 1990.

It is important to note that, while very detailed, the dataset has several layers of imputation

and measurement error. At the level of 30x30 meter gridded cells, there will be measurement error

coming from the satellite imagery and for each of the imputations I need to perform. However,

each of its layers is at least as precise as the housing unit tabulations by Census Block group, and

being gridded, not tethered to arbitrary boundaries, allows more flexibility for the next steps of

the analysis.

2.2 Delineating the growth of urban areas

The next step in the data construction is to trace the boundaries of urban areas, that is, to take a

stand on what was the extent of their physical footprint at every decade during my period of

study. The conventional approach of using fixed administrative boundaries, such as the county-

based delineations of Metropolitan Statistical Areas (MSAs), is not satisfactory for my purposes.

These county-based definitions tend to not conform to the actual extent of urbanized land, and in

8The Census provides housing unit counts at the level of Census Blocks, which are smaller and more detailed than
Block Groups. However, the available geometric representations for the boundaries of 1990-vintage Census Blocks in
1990 are of very poor quality. Therefore, I rely on the tabulations interpolated to 2010-vintage Block Groups produced by
the NHGIS, which seek to remedy many of these issues.
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fact contain vast amounts of rural land, particularly in the Western United States where counties

are very large. More importantly, the boundaries of MSAs are fixed over time, so that as cities

grow, the amount of rural land within them declines mechanically. To accurately distinguish

between extensive growth (sprawl) and intensive growth (redevelopment), my measurement of

the urban extent must itself be dynamic.

To avoid these potential pitfalls, I use a method proposed by de Bellefon et al. (2021), which

identifies the physical extent of urbanized land based on a statistical criterion on the density

of building footprints. The idea is to compare the density of the observed built environment

against a counterfactual “unconditional distribution" of buildings where buildings are randomly

re-distributed across the the country. Urban areas are areas where the density of buildings is

significantly higher than in this counterfactual distribution. In practice, the counterfactual distri-

bution is constructed by bootstraping the true distribution of buildings.

The method works as follows: The true distribution of built-up cells is smoothed spatially

using a kernel. Then, I create bootstraped counterfactuals by randomly re-distributing across the

country all the cells that are “buildable” , that is, cells that are not covered by bodies of water,

not excessively high, and with a slope below a threshold9. These bootstrapped counterfactuals

are interpreted as draws of an “unconditional” distribution where the buildings are distributed

randomly across all “buildable” locations in the country. I then smooth these counterfactual dis-

tributions using the same kernel I used with the true distribution. A cell is classified as urban

when its excess smoothed density is statistically significant at 95% compared to the counterfac-

tual, unconditional distribution of smoothed building densities. For computational reasons, I

do not perform this procedure on the full-resolution 30x30 meter dataset, but rather a coarsened

version that is aggregated to 210x210 meter cells.

As highlighted by de Bellefon et al. (2021), this method has the advantage of letting the data

speak as to what is the threshold of density that defines urban land. However, sensible choices

have to be made regarding the choice of kernel and the set of cells that are considered “buildable”.

The choice of kernel is important, if I did not smooth the data at all, I would classify as part of the

urban areas only the cells that contained buildings themselves, so the classification would be very

fragmented. For instance, I would classfify as non-urban many cells that do not contain buildings

themselves, but that are surrounded by built-up cells, such as urban parks. On the other hand, if

I oversmooth the data, I would erase the differences in density across cells.

9The original method creates counterfactuals by re-distributing individual buildings across buildable cells. I cannot
do this because I only observed the imputed building fooptrints in earlier periods of my data. Re-distributing entire cells
is also less computationally cumbersome. de Bellefon et al. (2021) show how re-distributing cells produces quantitatively
similar results to the full method, so that it is sensible when it is unfeasible to implement the full method.
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(a) Houston (b) Los Angeles

Figure 2: Growth of the urban extent 1990-2020, for Houston (a) and Los Angeles (b) MSAs. The solid
shapes show the delineation for each of the years, so that each color after 1990 represents new “ur-
ban” land in the metro area. Ligth gray represents “unbuildable” land (slopes, elevation) and light
blue represents water bodies. The gray outline around each map is the boundary of the Metropoli-
tan Statistical Area (MSA). Note how in both metro areas, the amount of new urbanize land in the
2010-2020 decade is very limited compared to the 1990-2000 and 2000-2010 decades.

I define which cells are “buildable” on the basis of their average slope, their elevation, and

the presence of permanent bodies of water inside of them. I choose the 99.9th percentile of these

values among all cells that contain buildings. “Buildable” cells are thus cells with less than 82%

water coverage, less than 18 degrees average slope, and less than 2460 meters of elevation above

sea level. Figure A1 in the Appendix has maps of the whole nation outlining these areas. For the

choice of smoothing kernel, I follow de Bellefon et al. (2021) in using a bisquare kernel, such that

the smoothed density ẑj of a cell j with coordinates xj, yj is given by:

ẑj =
∑j∈Ni

Kh(dij)zi

∑j∈Ni
Kh(dij)

, Kh(dij) =

[
1 −

(
d2

ij

h2

)]2

if dij < h, and 0 otherwise,

where dij is the cartesian distance between cells i and j, and h is the bandwidth of the kernel. I

set the bandwidth to 3000 meters, higher than the 2000 meters used by de Bellefon et al. (2021),

to account for the fact that the urban landscape in the Unites States is more sprawling than in

France.

I delineate urban areas over all decadal years in my data 1990-2020, drawing the bootstrapped

counterfactuals from the joint distribution of buildable cells across the four years in the data.

Drawing from the joint distribution ensures that the footprint density threshold that defines ur-

ban land is the same for all four years of data10.

Once I have delineated the physical extent of urbanized areas using the density-based method,

10The alternative would be running the delineation process separately for each year. While this would be appropriate
for studying the state of the urban system at very distant points in time, I am concerned with decade-by-decade changes.
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I assign them to Metropolitan Statistical Areas (MSAs) for classification and analysis. MSAs are

defined by the Census Bureau as groups of counties linked by commuting flows to a central urban

core, and they provide a natural way to organize urbanized areas into coherent labor markets. As

mentioned before, the MSA boundaries tend to be much larger than the actual boundaries of their

urbanized areas, so the urbanized areas I delineate never outgrow their assigned MSA boundaries

during my period of study. Figure A10 shows the delineation of urban areas in the conterminous

United States in 1990 and 2020, with MSA boundaries plotted as outlines. Note that throughout

the paper, whenever I refer to a "metro area," I refer specifically to the areas classified as urbanized

within the boundaries of its Census-defined MSA. Alsto note that my MSA definitions are from

the 1999 vintage.

The final step in the data construction is to aggregate the 30x30 meter gridded data into a set

of regular hexagonal neighborhoods that serve as the primary geographic units for the descrip-

tive analysis. I create a regular hexagonal grid covering the entire country, with each hexagon

having an area of approximately one square kilometer. Hexagons that intersect with the urban-

ized areas described in section 2.2 are classified as “urban” in a given year. Figure 3 illustrates

these neighborhood units using examples from the Chicago metropolitan area, showing how they

capture neighborhoods developed at varying intensities—from dense downtown areas to lightly

developed fringe zones.

For all statistics reporting where new construction took place, I classify a neighborhood as

having experienced new construction in a given decade if it contained at least one cell where

the number of housing units increased between the beginning and the end of the decade. This

hexagonal aggregation forms the basis of all descriptive results presented in Section 3. For the

model calibration in Section 4, I aggregate this data further into the three major neighborhood

types {Downtown, Residential, Fringe}, as described in section 4.4.1.
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(a) Downtown (b) Infill residential

(c) Fringe (d) All neighborhoods in Chicago

Figure 3: Three examples of neighborhoods developed at different intensities, all in the Chicago
MSA. The white hexagon outline in each of the panels (a), (b), (c) represents the outline of one of the
neighborhood units which are used for the descriptive analysis. Panel (d) represents all such neigh-
borhoods in the Chicago MSA, classified to discrete bins on the basis of their fraction developed.
Panel (a) shows one of the neighborhoods in Chicago’s downtown, where 90% of the land is devel-
oped. Panel (b) depicts an infill residential neighborhood, with 50% of the land developed. Panel (c)
illustrates a fringe neighborhood, where only 15% of the land is developed. The visible light imagery
in these maps is sourced from Esri World Imagery.
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3 The changing geography of urban growth

I now turn to the main empirical findings of the paper, which can be summarized in three main

facts. First, larger cities housed more of their 1990 population in already-dense neighborhoods—a

legacy of decades of prior growth—and when they built new housing during the 1990s, they

added it disproportionately through infill and redevelopment rather than sprawl. Second, this

reliance intensified dramatically over three decades, with big and small cities diverging in where

they built new housing. Third, all of the housing cost divergence across metro areas occurred in

already-dense neighborhoods; fringe areas showed no price divergence. I begin by characteriz-

ing cross-sectional differences in development patterns as of 1990, then trace how these patterns

evolved, and finally link this evolution to the spatial distribution of price growth.

Figure 4 reveals striking differences in how cities of different sizes are built. The left panel

shows the distribution of neighborhood densities around housing units in 1990—that is, the share

of homes located in neighborhoods developed at different intensities. Metro areas are grouped by

their 1990 population. While every city has fringe neighborhoods where land is lightly developed,

larger metros house a disproportionate share of their population in neighborhoods where land is

used very intensively.
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(a) Density of residential neighborhoods
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(b) Gradient of land availability

Figure 4: Distribution and gradient of neighborhood densities in 1990, by metro area population.
Panel (a) shows the distribution of neighborhood densities, weighted by housing units. Panel (b)
shows its gradient as a function of distance in kilometers from the city center. Metro areas are
grouped by their 1990 population. Metros with more than 3 million inhabitants in 1990 were: New
York, Los Angeles, Chicago, Washington DC, San Francisco, Boston, Philadelphia, Detroit, Houston,
Dallas, Miami. Metros with 800,000 to 3 million inhabitants are listed in the Appendix.

The right panel in figure 4 shows how this pattern plays out across space, plotting land use

intensity as a function of distance from each city’s center. Big cities are more intensively devel-

oped throughout their entire urban extent. While fringe areas are developed at similar intensities

15



across the city size distribution, they lie much further from downtown in larger metros—often

more than 100 kilometers out. In other words, the parts of big cities where substantial land avail-

ability exists are located far from their urban cores, making them less accessible. Moving toward

the center, the differences in development intensity become even starker: big cities tend to have

their land much more intensely developed at any given distance from downtown.

These differences in existing housing stocks translate directly into the flows of new construc-

tion. Rather than showing the full distribution immediately, I begin with the cross-metro rela-

tionship: Figure 5, panel (a), plots 1990 metro population against the average land-use intensity

around the typical new housing unit built during the 1990s. Larger metros systematically built

new housing in more intensively developed neighborhoods. Intuitively, because big cities already

housed a larger share of their population in dense areas, subsequent construction was more likely

to occur there as well. The full distribution of where new units were built across neighborhood

intensities is presented below in Figure 6.
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Figure 5: MSA-level scatterplots showing the relationship between the metro’s log population in
1990 and (a) the mean share of developed land around the average new housing unit built during
the 1990s (measuring reliance on intensive margins); (b) the Wharton Index of housing regulations
from Gyourko et al. (2008); and (c) the Saiz (2010) housing supply elasticity estimates. Note: Each
point represents one of the 236 Metropolitan Statistical Areas (MSAs) for which both the Wharton
Index and Saiz elasticity estimates are available.

The natural implication of this evidence is that any study that focuses only on regulations as

a source of supply constraints risks omitting a key confounder: large metros rely more heavily

on the costlier margins of construction. Figure 5 illustrates the broader pattern. Panel (b) shows

that bigger cities had, on average, more stringent housing regulations (Wharton Index, Gyourko

et al. (2008)), and panel (c) shows that they had lower housing supply elasticities (Saiz (2010)).

These city-wide measures of constraints are strongly correlated with the degree to which cities

rely on intensive development margins—and, as shown in the next subsection, this pattern has

only intensified over the decades.
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A closer look at supply elasticity schedules reveals that the relationship between regulations

and constraints is more nuanced than aggregate measures suggest. Figure A2 in the Appendix

shows how supply elasticities vary with distance from the CBD and development intensity across

metros with different regulatory environments. More regulated cities do exhibit lower supply

elasticities at any given distance from downtown. However, this difference largely reflects the

fact that they are more heavily developed at those distances. Heavily developed areas show

low supply elasticities regardless of the regulatory environment, while areas where greenfield

development is possible exhibit larger differences.

3.1 The divergence by city size since 1990

The cross-sectional patterns documented in the previous subsection reveal that larger cities al-

ready relied more heavily on intensive development margins during the 1990s. This subsection

documents how these patterns evolved over the subsequent three decades. Big cities became sub-

stantially more dependent on infill and redevelopment to build new housing, while small metros

continued accommodating growth primarily through expansion. This divergence in develop-

ment patterns mirrored very closely the divergence in housing costs across. All of the divergence

in housing costs across cities happened through differential price growth in already-dense neigh-

borhoods: Fringe prices did not diverge since 1990.

Figure 6 presents how cities further diverged by city size in their patterns of new construc-

tion. Each of the three panels plots the p.d.f. of local land use intensity around housing units

built during each decade 1990-2000, 2000-2010, and 2010-2020, separately by metro size category.

Over the three decades, bigger cities only increased their reliance on the intensive margins of

development, while smaller cities saw little change. Figure A3 showcases this divergence across

metro areas by plotting the metro-level distributions, and the systematic relationship with city

size over time. Figure A4 further de-composes this to show that the divergence happened both

for geographically constrained and un-constrained metro areas.

It is worthwhile to think about how this divergence happened in terms of distance to the

CBD. In figure A5 in the Appendix, I show how, in the 1990s, new construction happened at the

same relative distance from downtown across the city size distribution, that is, primarily at the urban

fringe of each city. Therefore, big cities were tapping more into infill and redevelopment because

they were more densely built on average. However, in subsequent decades, big cities experienced

a surge of new construction activity in their central cities, while small cities continued to build

primarily at their fringes.
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Figure 6: Evolution of the share of new housing built in neighborhoods of different densities, by
metro area population. Each panel shows the distribution of neighborhood densities weighted by
new housing units constructed during each decade (1990-2000, 2000-2010, 2010-2020). Panel (a)
shows metros with more than 3 million inhabitants in 1990; panel (b) shows metros with 800,000
to 3 million inhabitants; panel (c) shows metros with fewer than 800,000 inhabitants.

Figure 7 presents the evolution of housing costs11 as a function of neighborhood density

across different metro size categories. Average housing prices diverged dramatically across cities,

but this divergence ocurred only in densely developed neighborhoods. Downtowns (In these

plots, neighborhoods to the right of the land use intensity distribution) exploded in price in big

cities relative to these cities’ own fringe areas, while small city downtowns saw no price growth.

Areas at the middle of the distribution — infilled residential neighborhoods — saw a more mod-

erate divergence in prices. Finally, fringe areas saw no divergence at all: living in the urban fringe

of a big city in 2020 was no more expensive, relative to the fringe of a small city, than it had been

in 1990. Figure A6 in the Appendix shows the same pattern in terms of distance to the CBD.
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Figure 7: Evolution of housing costs (monthly rent) as a nonparametric function of local intensity of
land use. Each panel plots the same variable for each of the metro area size groups used throughout
the section.

11Measured as self-reported monthly rent from the Census
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These results, together, paint a consistent picture, where within-city supply elasticities have

(roughly) remained constant, and it is the demand that has changed sharply within big cities,

changing the composition of where new construction takes place, driving up prices in already-

dense neighborhoods, and pushing down the aggregate supply elasticities of metro areas as a

whole due to this demand concentration. In the next section, I develop a model to rationalize

these empirical findings.

4 Model

To rationalize the empirical findings in the previous section, I develop a model where the three

margins of urban growth—greenfield expansion, infill, and redevelopment—have different costs

and respond endogenously to household demand. The model shows how two forces concentrate

demand in already-developed neighborhoods: stagnating commuting speeds that raise the value

of central locations, and rising urban amenities that make downtown living more attractive. As

both forces push construction toward costlier margins, cities become more supply-inelastic, am-

plifying the impact of demand shocks on prices.

4.1 Household choice and the spatial structure of metro areas

There is a set M of metro areas in the country, which differ in their geography and productivity.

Metro areas are monocentric and circular, with locations being indexed by their distance r to the

city center Only an arc αm ∈ [0, 2π] is available for development, reflecting how some metros

have more geographic barriers to development than others.

Households have a total population of N and are indexed by ω. First, they choose whether

to live in one of the metro areas m ∈ M or in the rural outside option. Then they choose which

metro area to live in, which neighborhood i ∈ {D, R, M}, and which distance r within the bounds

of their chosen neighborhood. Households living in a metro area must commute to access their

jobs. Following Duranton and Puga (2023), the commuting costs faced by a household living at a

distance r from the city center are given by:

τm(r) = τ · (Nm)
ϕ · rγ (1)

Distance traveled by households increases with r with an elasticity γ > 0. τ is a parameter

capturing the baseline speed of travel, and (Nm)
ϕ captures the congestion of the metro’s roads,

which increases with the population of the metro area Nm with an elasticity ϕ > 0.
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Neigborhoods i ∈ {D, R, F} in metro area m differ in their level of residential amenities Aim,

and households have idiosyncratic preferences over metro areas and neighborhood types. Within

each neighborhood, households arbitrage over the price of housing and commuting costs. Thus,

the indirect utility of a household ω living in neighborhood i in metro area m at distance r is given

by:

Vim(ω, r) = (wm − τm(r)− Pim(r)) · Aim · νim(ω) (2)

The idiosyncratic shock νim(ω) is drawn i.i.d. from a generalized extreme value (GEV) distribu-

tion:

G({νim}) = exp

−

∑
m

(
∑

i∈Im

ν−θ
im

)−ψ/θ
 (3)

where Im denotes the set of neighborhoods in metro m, θ governs the within-metro elasticity of

substitution, and ψ governs the across-metro substitution. In case they choose to live in the rural

outside option, households receive a utility VRural = vRural · νRural(ω), with νRural(ω) being drawn

from a GEV distribution with parameter ψ (This implies that, to the households, the choice of the

rural outside option is the same as any other metro area).

In order for households to be distributed across all locations in a neighborhood, the bid-rent

schedule must ensure households are indifferent as they trade off housing and commuting costs.

For any two locations r′ > r within a neighborhood, the price of housing Pim(r) must therefore

perfectly capitalize any change in commuting costs, τm(r):

∀i ∈ {D, R, F} : Pim(r) = Pim
(
r′
)
+ τNϕ

m
(
r′γ − rγ

)
(4)

A direct consequence of this arbitrage is that a household’s indirect utility is independent of

their specific location within the neighborhood:

Proposition 1 (Constant Utility within Neighborhoods). The indirect utility Vim(ω, r) of a household

ω is constant for all radii r within a given neighborhood i in metro m.

See proof on page A-7.

This result allows us to write the indirect utility for a neighborhood choice without reference

to a specific radius. For convenience, let P̂im and τ̂im be the price and commuting cost evaluated

at any arbitrary reference point within neighborhood i. The indirect utility can then be written as:

Vim(ω) =
(
wm − τ̂im − P̂im

)
· Aim · νim(ω) (5)
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Once the idiosyncratic shocks are drawn, this gives us the familiar conditional logic proba-

bilities across metro areas and neighborhoods (McFadden, 1974), conditional on choosing to live

in a metro area:

πim =

(
vθ

im

∑j∈Im vθ
jm

)
︸ ︷︷ ︸

πi|m

·


(

∑j∈Im vθ
jm

)ψ/θ

∑k∈M
(

∑l∈Ik
vθ

lk

)ψ/θ


︸ ︷︷ ︸

πm

(6)

where vim =
(
wm − τ̂im − P̂im

)
· Aim is the deterministic part of indirect utility. Then, the proba-

bility of choosing to live in a metro area is given by:

πUrban =
∑m∈M

(
∑i∈Im vθ

im
)ψ/θ

∑m∈M
(
∑i∈Im vθ

im
)ψ/θ

+ vψ
Rural

(7)

4.2 Housing Supply and Land Rents

A competitive developer sector rents land from landowners to rent housing to households. At

each location r, competitive developers choose the type of land use—Downtown (D), Residential

(R), or Fringe (F)—that maximizes their profit. The boundaries between major neighborhoods

are thus determined endogenously at the radii {rDm, rRm, rFm} where developers are indifferent

between two adjacent uses.

Since the market is perfectly competitive, the rent of a housing unit Pim(r) is the sum of land

rents Rm(r), which I interpret as the value of a unit of land before obtaining construction per-

mits, and a permitting and construction cost per housing unit cim. In the urban fringe, where

development occurs on greenfield sites, variations in cim primarily reflect regulatory barriers to

converting rural land to urban use (Duranton and Puga, 2023). However, as we move toward

denser, more central neighborhoods, cim increasingly reflects the physical costs of infill and rede-

velopment (such as demolition, site assembly, and building on constrained parcels), in addition

to the regulatory costs of obtaining permits in already-developed areas.

The values of cim to the expansion of the city’s zones. As each zone expands into the next, the

cim wedge rises. In the fringe, this primarily reflects intensified regulatory opposition to convert-

ing additional rural land to urban use. In denser neighborhoods, the cost increase reflects both the

rising physical difficulty of redevelopment as sites become more constrained, and the escalating

regulatory burden as existing residents organize against new construction. The rate at which cim

rises as neighborhoods expand is governed by an inverse supply elasticity ηim. Locations that are

developed at the same intensity but with different regulatory environments have different elas-

ticities. These supply elasticities are obtained from the recent set of estimates by Baum-Snow and
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Han (2024).

I will present the supply side in two steps. First, I will describe the developer’s problem

taking as given the regulatory costs cim. For any set of values cim and a demand schedule, this

identifies the extent to which each neighborhood type is developed, the prices of housing, and

the land rent gradient. Then, I will describe how the regulatory costs cim evolve over time as

neighborhoods grow, based on their local housing supply elasticity. At this point, I will introduce

the time subscript in the variables to describe the transition from one decade to the next.

4.2.1 The Developer’s Problem

Downtown Development. In the downtown area, developers can fully exhaust the developable

lots and build vertically, but face high fixed costs denoted by cDm. Once they pay the fixed cost,

they choose a Floor Area Ratio (DensD) to build. The variable cost of construction increases with

DensD according to a Cobb-Douglas technology with elasticity ηDm > 0 and a cost shock εDm.

For any location r within the downtown zone, a developer’s problem is to choose the DensD that

maximizes profit:

max
DensD>0

{
DensD · PDm(r)−

εDm
ηDm + 1

DensηDm+1
D − cDm − Rm(r)

}
(8)

The first-order condition yields the optimal floor area ratio, Dens∗D(r) =
(

PDm(r)
εDm

)1/ηDm
. Substi-

tuting this back into the objective function gives the maximized profit (before land rent) for a

downtown developer:

ΠDm(r) =
ηDm

ηDm + 1
ε
−1/ηDm
Dm PDm(r) 1+1/ηDm︸ ︷︷ ︸
Variable Surplus

− cDm (9)

Suburban Development. In the suburban areas, developers choose between two fixed-density

options. They can develop land at Fringe density DensFm for a cost of cFm per home, or at a higher

Residential density DensRm > DensFm for a higher unit cost of cRm > cFm
12. The profit (before

land rent) for these uses at a location r is:

Πim(r) = Densi · (Pim(r)− cim), for i ∈ {R, F} (10)
12Implicitly, this assumes that R neighborhoods infill to a fraction of developed lots FracdevR > FracdevF
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4.2.2 Endogenous Boundaries, Prices, and the Land Rent Gradient

The spatial structure of each metro area is determined by the competition for land. At every

location r, developers choose the land use that yields the highest return. In a competitive market,

they bid up the price of land, Rm(r), until it equals the full profit (net of non-land costs) of the

winning use. The equilibrium land rent schedule is therefore the upper envelope of the potential

profits from all uses:

Rm(r) = max {0, ΠFm(r), ΠRm(r), ΠDm(r)} (11)

The boundaries between neighborhoods emerge at the specific radii where the profit curves of two

adjacent land uses intersect, making developers indifferent between them. We can characterize

the entire price and rent structure of the city by solving for the prices at these boundaries, starting

from the city’s edge and moving inwards. Proposition 2 summarizes these results.

Proposition 2 (Equilibrium Prices and Land Values at Endogenous Boundaries). In equilibrium,

housing prices at the three endogenous boundaries {rFm, rRm, rDm} reflect two components: (i) the land

value derived from capitalized commuting savings, and (ii) the wedge cim that governs neighborhood ex-

pansion. Given model parameters, boundaries, and the values of the wedges cim, the housing costs at each

boundary de-compose in the following way:

(i) Fringe-Rural Boundary (rFm): At the urban edge, the value of land is that of the rural outside

option, which is normalized to zero. Thus, the equilibrium price equals the marginal cost of fringe

development, revealing the wedge:

PFm(rFm) = cFm (12)

(ii) Residential-Fringe Boundary (rRm): At the Residential-Fringe boundary (rRm), the price cov-

ers the residential construction cost plus the capitalized value of commuting savings relative to the

fringe:

PRm(rRm) = cRm︸︷︷︸
wedge

+
DensFm
DensRm

τNϕ
m
(
rγ

Fm − rγ
Rm
)

︸ ︷︷ ︸
Land value from commuting savings

(13)

(iii) Downtown-Residential Boundary (rDm): At the Downtown-Residential boundary (rDm), the

price is determined by the full land value, which includes capitalized commuting savings from both

the Residential and Fringe zones:

PDm(rDm) =

[(
ηDm + 1

ηDm

)
ε
1/ηDm
Dm ·

(
cDm + τNϕ

m
[
DensRm(r

γ
Rm−rγ

Dm) + DensFm(r
γ
Fm−rγ

Rm)
])] ηDm

ηDm+1

(14)

These expressions allow us to separate the pre-permitting land values (determined by commuting savings)
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and the wedges cim.

See proof on page A-7. Note that these boundary prices, and the commuting costs at the

boundaries can be used as the representative P̂im and τ̂im values to solve equilibria. That is, we

can set P̂im = Pim(rim), and similarly for commuting costs, τ̂im = τNϕ
mrγ

im for i ∈ {F, R, D},

without having to compute average prices or commuting costs within each ring.

4.2.3 Total housing supply in each ring

The total housing supply in each ring is obtained by integrating over the available land and built

density within its radii. Since F and R ring are built at fixed densities, the total housing supply in

each of these neighborhoods has a simple closed form:

∀i ∈ {R, F} : Him = Densim · αm ·
r2

i−1,m − r2
im

2
(15)

In the case of the Downtown, we need to integrate over the variable FAR from the CBD all the way

to the rDm boundary, which comes from the bid-rent condition in equation 4. The total housing

supply in the downtown neighborhood is given by:

HDm = αm

∫ rDm

0

(
PDm(rDm) + τNϕ

m(r
γ
Dm − rγ)

εDm

)1/ηDm

r dr (16)

Where PDm(rDm) is given by equation 14.

4.2.4 The response of cim to neighborhood growth

The construction wedges cim react to the expansion of each neighborhood type. As it grows, local

opposition to development ratchets up, raising the regulatory cost cim. The update is given by the

following rule:

cim,t′ = cim,t · exp
(
ηim∆ logAim,t′ + εim,t′

)
(17)

Where ∆ logAim,t′ measures the growth in the physical area Aim of neighborhood i between

periods t and t′:

∆ logAim,t′ = log
(
Aim,t′

)
− log (Aim,t) , where Aim,t = π(r2

im,t − r2
i−1,m,t) (18)
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4.3 Spatial Equilibrium

A spatial equilibrium at time t is fully characterized by the vector of endogenous neighborhood

boundaries rt = {rDm,t, rRm,t, rFm,t}m∈M across all metro areas. Given the exogenous fundamen-

tals—wages {wm,t}, amenities {Aim,t}, construction cost wedges {cim,t}, and the intensive mar-

gin parameters for downtown development—the boundaries are determined by market clearing

conditions in every urban neighborhood simultaneously. In the transition from one decade to the

next, the growth of each zone endogenously updates the construction wedges {cim,t} according to

equation 17, so that the evolution of the urban system has a recursive structure decade by decade.

4.3.1 Spatial equilibrium given {cim,t}

Formally, an equilibrium is a vector of boundaries r∗t that clears all housing markets: For every

zone i ∈ {D, R, F} in every metro area m ∈ M:

Him(r∗t ) = Ndemand
im (r∗t ) (19)

The left-hand side, Him(r∗t ), is the housing supply determined by the profit-maximizing deci-

sions of competitive developers, as detailed in section 4.2.3. The right-hand side, Ndemand
im (r∗t ), is

the number of households choosing to live in neighborhood i of metro m, derived from the nested

logit structure in equation 6. Crucially, both sides depend on the full vector of boundaries r∗t :

the boundaries determine housing supply directly through geometry, and indirectly determine

demand through their effect on housing prices and commuting costs, which in turn affect the

deterministic utility vim that households use to make location choices.

4.3.2 Equilibrium Transition

The model is solved recursively in decadal time steps. The state of the economy at time t is sum-

marized by the vector of boundaries rt and construction wedges ct = {cim,t} across all metro-zone

pairs. At the transition to period t′, the economy experiences a sequence of exogenous shocks.

Wages evolve to their new values {wm,t′} and amenities to {Aim,t′}, reflecting changes in produc-

tivity and residential quality across metros and zones. The national population grows to Nt′ , the

baseline commuting cost parameter updates to τt′ , and the rural outside option utility becomes

vrural,t′ . Finally, idiosyncratic supply shocks {εim,t′} are realized for each zone in each metro, cap-

turing unobserved regulatory or political changes that affect construction costs independently of

neighborhood expansion.
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Given these shocks and the previous state (rt, ct), the construction wedges mechanically re-

spond to the growth or contraction of each zone according to equation 17 based on the change in

their physical area and the local housing supply elasticity ηim.

The new equilibrium at time t′ is then a vector of boundaries r∗t′ such that housing markets

clear in every zone of every metro area. That is, for every zone i ∈ {D, R, F} in every metro area

m ∈ M, the equilibrium boundaries must satisfy:

Him(r∗t′ ; ct′) = Ndemand
im (r∗t′ ; {wm,t′}, {Aim,t′}, τt′ , vrural,t′ , Nt′)

In section D.2 in the Appendix I describe the numerical solution to solve the equilibrium. In

order to solve the model, I define a fixed-point mapping between housing quantities and their

corresponding boundaries, which allows me to solve in population space via a pseudo-Newton

method.

4.4 Calibration of the Model

In this subsection I describe the calibration of the model’s parameters and exogenous fundamen-

tals, how I construct the spatial structure of each metro area, and the inversion procedure to

recover residential amenities and unobserved supply shocks. Table 1 summarizes the parameters

used in the model and their sources.

4.4.1 Metro spatial structure

The first step in the calibration is to aggregate my dataset to the stylized structure of the model,

while respecting the spatial scales of metro areas. Matching the spatial scale is crucial, since

commuting costs in the model depend directly on it.

I aggregate the hexagon-level data described in section to the major neighborhood types

i ∈ {D, R, F} by binning the hexagonal grid cells on the basis of their land use intensity. In

principle, the threshold to classify a hexagon Downtown is that it is 67% developed or more, which

is the point where we observe a sizeable increase in multi-family buildings, as well as a sharp

differential increase in prices and building activity. Since smaller metros do not tend to have

much housing in such high-density areas, I add an additional criterion: Whenever a metro did

not have at least 15% of its housing in hexagons with at least 67% development in 1990, the

Downtown threshold is lowered to the density of the 85th percentile in that metro.

I follow a similar approach with the Residential threshold, which I set to 35% development,
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that is, roughly the density of the 45th percentile home nationally in 1990. Whenever a metro

area does not have at least 45% of its housing in hexagons with at least 35% development, I lower

the threshold to the density of the 45th percentile in that metro. All urban hexagons below the

Residential threshold are classified as Fringe.

(a) Boston MSA (b) New York MSA

Figure 8: Fit of the stylized monocentric boundaries to the observed neighborhood classifications
for the Boston (a) and New York (b) metro areas in 2020. The colored areas represent the actual
classification of hexagonal neighborhoods into Downtown (green), Residential (blue), and Fringe
(orange) based on their land use intensity. The dashed circles represent the model’s inverted radii
(rDm, rRm, rFm), which define the boundaries of the three stylized zones in the monocentric model.

Once the hexagons are classified, I use their local housing densities to compute the average

housing density of each neighborhood type in each metro area, Densim. I also compute the arc

of developable land αm in each metro area by computing the amount of developable land in a 50

kilometer radius around the CBD, similar to Saiz (2010). The combination of these two measures

and the housing stocks Himt allows me to invert the radii rimt. Figure 8 shows the fit of the stylized

boundaries to the true geography of the city for Boston and New York metro areas in 2020. Figure

A11 shows the fit of the model to average distance to the CBD across all metro areas and years.

4.4.2 Demand elasticities

I parametrize the demand elasticities θ and ψ using parameter estimates from similar settings

in the literature. For the across-metro elasticity of substitution ψ, I set a value of 3, following

(Hsieh and Moretti, 2019). For the elasticity of substiution between neighborhoods within a metro,

the size of the neighborhoods matter: Couture et al. (2024) estimate an elasticity of 3 between

“downtown” (the 10% most central neighborhoods of a metro) and the rest of the metro in large
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Parameter Value Source

Demand Parameters

θ 4 Couture et al. (2024), Ahlfeldt et al. (2015)
ψ 3 Hsieh and Moretti (2019)

Commuting Technology Parameters

τ Between 112 and 181 Own calibration
γ 0.07

0.04 Duranton and Puga (2023)
ϕ

Housing Supply Elasticities (By metro and major neighborhood)

ηDm

See Figure 9 Baum-Snow and Han (2024)ηR→Dm
ηF→Rm
ηFm

Table 1: This table summarizes all parameters used in the quantitative spatial model. “Own calibra-
tion” refers to parameters constructed directly from the dataset described in Section 2. Supply elas-
ticity parameters are imputed from tract-level estimates by averaging over relevant neighborhood
types within each metro area. Residential amenities Aim are recovered through the model inversion
procedure detailed in the Appendix. The baseline commuting cost parameter τ is calibrated sepa-
rately for each year to match average commuting times in urban areas.

US metro areas, while Ahlfeldt et al. (2015) find an elasticity of 6.8 between circa 3000 blocks in

Berlin. Therefore, I set a value of θ of 4, somewhat more elastic than the substitution between

metros.

4.4.3 Commuting structure

I parametrize the commuting cost parameters γ and ϕ in equation 1 using estimates from Du-

ranton and Puga (2023). They estimate γ, the elasticity of driving distance with respect to the

residential distance from the CBD, from confidential microdata from the National Household

Travel Survey. They find a value of 0.07, that is, on average, households increase their driving

distance by about 0.7% for every 1 kilometer increase in their distance from the CBD. For param-

eter ϕ, that is, the elasticity of traffic congestion with respect to metro population, they produce

estimates from two separate sources. One is the same confidential NHTS data they use for the γ

parameter, while the other is as a dataset of millions of predictions of travel times, sampled from

Google Maps by Akbar et al. (2023). Both methods yield an estimate of 0.04, which I use in my

parametrization.

The baseline commuting cost parameter τ scales the total dollar value of commuting, and can

be interpreted as a composite of a technology parameter that determines speed, and the dis-taste

for time spent commuting. I calibrate it separately for each year in the following way. Given

values for all other parameters, and the true equilibrium outcomes, each value of τ maps mono-

tonically to the total dollar cost of all the commuting that takes place in the urban system. I
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attribute to each hour spent commuting half the value of the average hourly wage (Couture et al.,

2018), and then I set the value of τ so that the average commuting time in the model matches the

average commuting time within urban areas in that year, as measured in tract-level Census and

ACS data. Figure A12 in the Appendix shows the fit of this untargted moment.

4.4.4 Housing supply elasticities

I calibrate the supply elasticities of each metro-neighborhood using the Census Tract-level esti-

mates produced by Baum-Snow and Han (2024). These estimates are produced by running a

regression of the kind:

∆ log(Him) = θm + Ximδ + ηim · ∆ log(Pim) + ϵim

where ηim is parametrized to depend on tract observables, namely topography, urban land use in-

tensity, and zoning regulations. Identification comes by instrumenting the observed price changes

with a shift-share instrument (Bartik, 1991) of each tract’s Resident Commuter Market Access, a

commute-weighted metric of access to employment opportunities developed by Tsivanidis (2023).

These estimates were created using 2000-2010 data, and I employ them in my model under

the assumption that observationally similar neighborhoods in metro area m had the same supply elas-

ticities throughout the period. I impute each of the {ηDm, ηR→Dm, ηF→Rm, ηFm} by averaging the

elasticity estimates for the relevant areas: ηDm, the intensive margin elasticity of downtowns, is

the average for the areas classified as Downtown in 2000. ηR→Dm drives the costs of downtown

expansion into the Residential ring, so it is the average elasticity of each metro’s neighborhoods

classified as residential. The same logic applies with the ηF→Rm that governs expansion into the

fringe. Finally, for ηFm I draw an expansion buffer of 15% around each urban area in 2000, and

take the average of the intersecting tracts.

Figure 9 shows the distribution of housing supply elasticity estimates aggregated to metro-

neighborhood level. As documented by Baum-Snow and Han (2024), there is substantial hetero-

geneity in supply elasticities both across and within metro areas. Each curve represents the p.d.f

function of the ηim values of each ring across the 275 metro areas. Variations in supply elasticities

across metros are captured by looking at the same curve. Note that the variation across metros is

capturing both regulatory differences and the fact that I use lower density thresholds to classify

the {D, R, F} zones in smaller metros, which mechanically leads to higher supply elasticities for

each zone.
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Figure 9: Density function of metro-major neighborhood type housing supply elasticities. Each
curve is the kernel density of the average supply elasticities for neighborhoods of a type, at the level
of metro areas. For example, the "Downtown" curve is the kernel density of {ηDm}m∈M for each of
the 275 metro areas.

4.5 Model inversion: Amenities, and supply shocks

Given parameter values and the observed equilibrium outcomes, the model can be inverted to

recover the unobserved amenities Aimt and costs cimt that rationalize, respectively, the observed

population allocations and prices at each of the neighborhood boundaries. Once the costs cimt

have been recovered, the local housing supply elasticities and the growth of each neighborhood

identify the unobserved supply shocks εimt.

The inversion of amenities is given by expanding the choice probability equation 6 to solve

for Aim. For any given set of parameters, fundamentals, and observed outcomes, there is a unique

vector of amenities that rationalizes the observed population allocations. The details of the inver-

sion procedure are given in section D.1 of the Appendix. Similarly, the inversion of the costs cimt

is given by expanding the boundary pricing conditions in Proposition 2 to solve for cim.

Once the costs cimt have been recovered, I can use the growth of each neighborhood and the

local supply elasticities to back out the unobserved supply shocks εimt from equation 17. When-

ever I run any counterfactuals or decomposition exercises, I keep the history of these unobserved

supply shocks.

5 Model results

With the calibrated model in hand, I now produce a set of results that shed light on the facts that I

outline in section 3, and which allow me to measure the importance of cities’ internal geographies
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for housing affordability. First, I will use the demand fundamentals recovered from the model to

understand why households pay such a high premium to live in a relatively reduced set of prime

locations, and why this premium has increased so much since 1990. As I have reiterated before,

this is the combination of several forces coming together to concentrate housing demand in a

reduced set of very developed, supply-inelastic areas.

Second, I will produce a set of counterfactual exercises that isolate the role of the main mech-

anism in this paper. The first such counterfactual isolates the contribution of housing costs of the

additional demand concentration since 1990, while the second attempts to fully shut of the costs of

infill and redevelopment in big cities observe the population reallocations in such an economy.

5.1 Characterizing the concentration of demand

The first exercise that the model is useful for is to characterize the demand fundamentals, in their

1990 levels and how they changed since. For context throughout this section, I will report the

evolution of each variable by grouping over main zones. For example, figure 10 the 1990-2020

divergence of housing costs for all downtowns, all residential areas, and all fringe areas, respectively,

by plotting the log rent deviation from the national mean, weighted by the number of households

living in each zone.
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Figure 10: Rents Log rent deviation from national mean by neighborhood type, weighted by number
of households. Each panel shows the evolution of relative housing costs for a different neighborhood
type: (a) Downtown, (b) Residential, and (c) Fringe.

I start with the residential amenities Aim. Being the residual of the inversion procedure,

they capture all the benefits of living in any given location that are not explained by wages and

commuting costs. That is, the value of local public goods, such as schools, safety, environmental

quality, but also urban consumption amenities, such as access to cultural institutions, restaurants,

and social interactions13. Figure 11 showcases the distribution of recovered amenities by main

13This is the key insight of the Rosen-Roback model (Roback, 1982; Rosen, 1979)
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zone (All downtowns, all residential areas, all fringe areas), in 1990 and 2020. The plots show the

de-meaned log amenities, weighted by the number of households living in each zone.

The changes in the spatial distribution of amenities already partially explain why housing

costs increased so much downtown. The right side of the distribution of downtown area ameni-

ties — corresponding to big cities — gets substantially fatter between 1990 and 2020, just as fringe

amenities in big cities get compressed towards the mean. In other words, downtown areas in big

cities became relatively more attractive in terms of amenities relative to their own fringe and to

the rest of the country, and this is part of the reason why big cities turned to redevelopment of

their downtowns.
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Figure 11: Amenities by neighborhood type, weighted by number of households. Each panel shows
the evolution of relative housing costs for a different neighborhood type: (a) Downtown, (b) Resi-
dential, and (c) Fringe.

It is important to note that this finding is consistent with a large body of work in the urban

revival literature. Starting with Baum-Snow (2020), Couture and Handbury (2020), Couture and

Handbury (2023), and Diamond (2016), a large literature has documented the spatial concentra-

tion of residential amenities in central areas of big cities. While not the focus of this paper, this

literature finds that this is an equilibrium outcome from the changing income sorting patterns

of households: As young, high-income households sort into central areas of big cities, they cre-

ate the demand for the provision of urban amenities that further fuels the attractiveness of these

locations.

In turn, this resorting has deeper structural roots. Diamond (2016) documents how the dif-

ferential wage growth for high skill workers in big cities was the spark for re-sorting across cities.

In turn, Couture et al. (2024) shows how rising income inequality within those big cities allowed

high-income households to outbid lower-income households for central locations, effectively cre-

ating high-quality central neighborhoods that did not exist before. Moreno-Maldonado and San-

tamaría (2025) document how delayed childbearing among high-income households extended
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their period of valuing urban amenities, further concentrating demand in central neighborhoods.

For the purposes of this paper, the key takeaway is that the recovered amenities show a clear

pattern of demand concentration in the downtowns of big cities, and that their suburban fringes

became relatively less attractive over time. Given the surveyed literature, I interpret these recov-

ered amenities as the byproduct of this broader structural shift in what makes cities attractive to

households, and I take my recovered amenities as a history of exogenous fundamentals.

I then look at the evolution of commuting times. Figure 12 shows the evolution and dis-

tribution of model-implied two-way daily commuting times in minutes by main zone and city.

Just as in the real data, shown in figure A7 in the appendix, commuting times vary more across

metros than within, due to the vast differences in spatial scale and congestion levels across cities:

bigger cities have longer commuting times. Because cities generally got bigger, commuting times

increased across the board. Because urban growth creates more potential commuting savings, as

outlined in Proposition 2, this generally concentrated demand in more central areas.
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Figure 12: Evolution of commuting costs implied by the model by neighborhood type, weighted
by number of households. Each panel shows the evolution of model-implied commuting costs for a
different neighborhood type: (a) Downtown, (b) Residential, and (c) Fringe.

Why do households pay such a premium to live in big cities though? The answer lies in

both wages and amenities. As was the insight of Glaeser et al. (2001), big cities attract population

because they offer both higher wages and better amenities (See figure A8 in the appendix). And

while the spatial distribution of amenities did not change much when considering metro-level

averages, wages did substantially. Figure 13 shows the evolution of average wages and popula-

tion across metro areas between 1990 and 2020. The biggest metro areas saw their average wages

increase substantially more than smaller metros, fueling a strong concentration of population in

big cities. Because the superstar metro areas were already very congested, the population increas-

ingly grew in a “second tier” of big cities such as Houston, Dallas, Atlanta, Austin, or Miami.
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Figure 13: Evolution of wages and population across metro areas, 1990-2020.

5.2 Demand concentration and the rise in housing expenditures since 1990

The fact that housing demand generally concentrated in supply-inelastic areas since 1990 poses a

natural question: how much of the rise in housing costs can be attributed to this demand con-

centration, and what fraction comes from concentration within big cities versus concentration

towards big cities overall? To answer this, I construct a set of counterfactual histories of the econ-

omy that shut off some of the changes in the spatial distribution of the demand fundamentals —

amenities, wages, commuting technology — while allowing the rest of the economy to evolve as

observed. Comparing the outcomes from these counterfactual economies to the baseline allows

me to isolate the contributin of each of these demand-side forces to the rise in housing costs since

1990.

The first such counterfactual isolates the contribution of shifting demand towards infill and

redevelopment within metros. Part of this happened because metros simply grew in size and

had their commuting times increase, while another part was because of urban revival, i.e. the

within-city changes in the spatial distribution of amenities. Therefore, in this within-city demand

counterfactual, I freeze the within-metro distribution of amenities at 1990 levels, and I construct

a set of alternative commuting cost parameters τ that prevent the increase of commuting times.

This way, metros’ overall attractiveness (average metro-level amenities, metro-level wage distri-

butions) evolves as observed, but the additional demand concentration within metros is shut off.

The second counterfactual, which I term the across-city demand counterfactual, isolates the

orthogonal channel: I let the within-metro distribution of amenities and commuting costs evolve

as observed, but I freeze the metro-level average amenities and wage distributions at 1990 levels

(This mostly affects the wage distribution). This way, the additional demand concentration within

metros is allowed to evolve as observed, but big cities do not become differentially more produc-
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tive over time. Finally, in the third counterfactual, I shut off all demand concentration by freezing

both the within-metro distribution of amenities and commuting costs, as well as the metro-level

average amenities and wage distributions at 1990 levels. This serves as a benchmark to compare

the two previous conterfactuals, and offers a view into an economy where the U.S. urban system

grew in a relatively more uniform way.

As an outcome for these counterfactuals, I focus on a measure of housing expenditures, that

is, what fraction of household income is spent on housing, which I define as the ratio of average

montthly rent to average monthly income, in each metro area and nationally. Housing expen-

ditures increased substantially between 1990 and 2020, from 28.42 % to 31.35 % of wage income

nationally, and the standard deviation across metro areas increased by 45.16 %. Figure A9 in the

Appendix shows the metro-level distribution. For this exercise, I keep the total urban population

fixed, by adjusting the value of the rural outside option vrural,t so that the changes in expenditures

are only driven by the re-sorting of population within the urban system and not migration from

rural areas.

Housing expenditure Share of Across-city Share of
national growth total mean std. dev. total std.

(p.p.) change change change

True 1990–2020 changes 10.31% (2.93 p.p.) 100% 45.16% 100%

Contribution by:
Changes in demand within cities 2.33% (0.66 p.p.) 22.57% -1.91% −4.22%
Changes in demand across cities 1.49% (0.42 p.p.) 14.47% 16.48% 36.50%
All changes in demand 3.60% (1.02 p.p.) 34.88% 7.07% 15.66%

Table 2: Decomposition of housing cost growth, 1990-2020

Table 2 summarizes the results from these counterfactual exercises. Demand concentration

since 1990 contributed to of the rise in national housing expenditures, of which more than half

corresponds to the concentration of demand within cities. However, even if the entire rise in

demand concentration was shut off, housing expenditures would have risen substantially. In

the next subsection, I explore more extreme counterfactuals to take into account the full role of

demand for infill and redevelopment, as well as regulations, in driving up housing costs.

5.3 The (limited) effects of de-regulation

Given the results found in this paper so far how much additional population could major cities

actually accommodate under more permissive zoning, and at what prices? I address this question

by simulating regulatory reform in seven cities with strict housing regulations: New York, Los
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Angeles, Washington DC, San Francisco, Boston, Seattle, and San Diego14.

I construct counterfactual supply elasticities by exploiting the tract-level estimates from Baum-

Snow and Han (2024), which parametrize how local observables—development intensity, topog-

raphy, and regulations—map into supply constraints. For each of the seven cities, I recalculate

what their tract-level elasticities would be if they had the supply elasticity schedule of the 75th

percentile city15. I then aggregate these adjusted tract-level estimates into the four neighborhood-

specific elasticities {ηDm, ηR→Dm, ηF→Rm, ηFm} following the procedure in Section 4.4.4, and sim-

ulate the full urban system under this deregulation scenario. Figure A14 in the Appendix shows

the adjusted supply elasticity schedules for these seven cities as a function of neighborhood frac-

tion developed.

Table 3 summarizes the results from the de-regulation counterfactual. The results show that

relaxing zoning would have modest effects in allowing these cities to accomodate more popula-

tion at lower prices. The 1990-2020 population growth rate in these seven cities would have been

12% higher than baseline, allowing them to accommodate 2.7% more population by 2020. Hous-

ing costs grow 5% less than baseline. These results are significantly smaller than those in studies

such as Hsieh and Moretti (2019) and Duranton and Puga (2023), because most of the demand in

these big cities is concentrated in the Downtown and Residential areas, where the Baum-Snow and

Han (2024) estimates predict that supply elasticities would remain low under deregulation.

An easy way to see this is to consider a naive model, more akin to Hsieh and Moretti (2019),

which abstracts from the internal geography of cities altogether. I create one such model where

each metro area is treated as a homogeneous unit with a single supply elasticity, amenity level,

and commuting cost. In this naive model, detailed in Section F of the Appendix, de-regulation is

simulated not by adjusting the supply elasticity schedule, but simply by setting the seven cities’

elasticities to the national 75th percentile. A naive counterfactual like this predicts much larger

effects from deregulation, just like what the literature usually predicts. The naive model predicts

that deregulation would increase the 1990-2020 population growth rate in these cities by 39% and

reduce price growth by 16%—effects roughly thrice as large as those from my full model.

These findings suggest that the de-regulation that is usually proposed by the literature cannot

fully solve the housing challenges of big cities. While relaxing zoning constraints would help at

14I focus on these cities to facilitate comparison with Duranton and Puga (2023).
15Baum-Snow and Han (2024) introduce heterogeneity in the supply elasticity schedules across cities by estimating a

Finite Mixture Model (FMM) with two classes. Cities have different probabilities of belonging to one class or another
depending on their share developed 50 kilometers from the CBD, their geographic features, and their regulatory envi-
ronment as measured by the Wharton Index. Since all these three elements are in fact highly correlated, I simply set the
probability of belonging to the more elastic group to the 75th percentile nationally, in order to get an upper bound of the
effect of regulations.
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(a) Effect of deregulation on housing quantities and population

Observed De-regulation

Households Households Additional Households
by 1990 by 2020 growth by 2020

(thousands) (thousands) 1990-2020 (thousands)

New York 6,786 8,270 6.6% 8,368
Los Angeles 5,178 6,503 27.9% 6,872
Washington 2,414 3,581 8.8% 3,684
San Francisco 2,404 3,020 9.4% 3,078
Boston 2,129 2,686 3.5% 2,706
Seattle 1,135 1,871 10.6% 1,949
San Diego 910 1,201 6.9% 1,221
Rest of cities 50,289 76,628 -1.2% 76,308
Rural areas 30,391 35,867 0.0% 35,867

(b) Effect of deregulation on housing costs

Observed De-regulation

Avg. rent Avg. rent Additional Avg. rent
by 1990 by 2020 growth by 2020
(2017 $) (2017 $) 1990-2020 (2017 $)

New York 1,070 1,711 -4.8% 1,681
Los Angeles 1,171 1,932 -6.8% 1,880
Washington 1,094 1,748 -7.5% 1,699
San Francisco 1,245 2,375 -3.8% 2,331
Boston 1,051 1,567 -4.5% 1,544
Seattle 888 1,802 -6.6% 1,742
San Diego 1,131 2,097 -2.6% 2,072
Rest of cities 770 1,197 -1.4% 1,191
Rural areas — — — —

Table 3: Counterfactual results from relaxing zoning in seven cities with strict housing regulations.
Zoning relaxation is simulated by adjusting tract-level probabilities of belonging to high or low sup-
ply elasticity groups in the Baum-Snow and Han (2024) finite mixture model estimates to the 75th
percentile nationally, then re-aggregating to neighborhood-level elasticities. Panel (a) shows the ef-
fect on housing quantities, while panel (b) shows the effect on housing costs.
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the margin by making fringe development easier, the estimates from Baum-Snow and Han (2024)

reveal that no city in the United States, regardless of its regulatory environment, has high supply

elasticities in areas where redevelopment is necessary to accomodate additional demand. Recent

work by Rollet (2025) micro-founds this in the context of New York City, showing that even in the

complete absence of zoning, supply elasticities would be very low because of the high fixed costs

of redevelopment. The implications of this will be discussed further in the conclusion.

6 Conclusion

This paper demonstrates that the internal geography of cities —both the demand and the sup-

ply— fundamentally shapes housing affordability and cities’ capacity for growth. In the context

of U.S. cities, I show how the rising costs of housing in America reflect not just regulatory con-

straints, but a more fundamental form of congestion in where households want to live and how

costly it is to build housing to accomodate them there. This challenge extends well beyond U.S.

borders. Housing prices have surged in big cities in virtually every developed country. As eco-

nomic activity continues to concentrate in major urban centers, this trend is likely to continue.

Understanding this issue is therefore crucial for designing effective policy responses.

What policy responses might address this challenge? The exercises in this paper do suggest

that de-regulation could help somewhat, but we need more detailed data and micro-founded

models of redevelopment to really understand this. In this direction, a big advance has been

made recently: Rollet (2025) shows how a complete de-regulation of zoning in New York City

would help increase supply in the city, because some areas of face so much demand pressure that

redevelopment would be profitable. However, even under complete de-regulation, the inherent

costs to redevelopment would prevail: supply elasticities would still be low compared to virtually

any area in the country, and housing costs would remain high.

However, an even more important question is, what could reduce the concentration of demand in

the first place? Just as the railway (Heblich et al., 2020) and the automobile (Baum-Snow, 2007) once

enabled access to urban opportunities without crowding, modern telecommunications may offer

similar promise. Delventhal and Parkhomenko (2024) and Delventhal et al. (2022) show early

signs that remote work can facilitate population reallocations that reduce pressure on the most

expensive locations. Beyond such technological shifts, one could consider strenghening alterna-

tives to superstar cities, something that has been happening organically in the U.S. as second-tier

cities grow rapidly.

The path forward likely requires a combination of these strategies: smarter regulation that

38



reduces artificial barriers while acknowledging the real costs of dense construction, technological

and organizational changes that reduce the spatial concentration of economic activity, and policies

that strengthen alternatives to superstar cities. Each of these approaches deserves careful study to

help solve what has become one of the most pressing policy challenges in developed economies.
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Appendices

Appendix A Data appendix

(a) Water (b) Elevation

(c) Steep slopes (d) Unbuildable cells

Figure A1: Unbuildable cells across the United States, calculated from the NLCD and the national
elevation map. For reference, I include the outlines of the 275 Metropolitan Statistical Areas I use in
my analysis.

Appendix B Additional results
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(a) Development intensity vs. distance (b) Supply elasticity vs. distance
(c) Supply elasticity vs. development inten-
sity

Figure A2: Relationship between development intensity, distance from CBD, and housing supply
elasticities, by regulatory environment. Metro areas are grouped by their Wharton Regulatory Land
Use Index (WRLURI).
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(b) Population and reliance on intensive margins

Figure A3: Divergence in reliance on intensive margins of development across metro areas. Panel
(a) shows the distribution of MSA-level average land use intensity around new housing units built
during each decade 1990-2000, 2000-2010, and 2010-2020. Panel (b) plots the relationship between
log metro population in 1990 and the mean share of developed land around new housing units
built during the 1990s, revealing that larger metros systematically rely more heavily on infill and
redevelopment.
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(b) 2000-2010
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Figure A4: Redevelopment by geographically constrained and unconstrained metro areas. Metro
areas are split by whether they are geographically constrained to development. Geographic con-
straints are calculated similarly to Saiz (2010), by drawing a 50 kilometer radius around the CBD and
calculating the share of developable land. I set as “geographically constrained” those where at least
20% of their landmass is not developable due to elevation, steep slopes, or bodies of water. Note
how, on average, big cities with geographic constraints do redevelop more than those without, but
that big cities tend to redevelop more on average. If we pay a bit of attention to the cities in the plot,
it can also be argued that most of the big, geographically constrained cities are also the ones that had
historical downtowns. All of this is addressed in the quantitative model.

Note: Some geographically constrained cities are New York, Los Angeles, San Francisco, Miami, San Diego, Tampa ; some
unconstrained cities are Chicago, DC, Philadelphia, Boston, Detroit, Dallas, Houston, Seattle, Atlanta, Cleveland,

Minneapolis, St. Louis, Pittsburgh, Phoenix
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Figure A5: Evolution of the share of new housing built in neighborhoods at different distances from
the CBD, measured as the fraction of total distance to the urban edge (weighted by housing units).
Each panel shows the distribution for a different metro size group: (a) metros with more than 3 mil-
lion inhabitants in 1990; (b) metros with 800,000 to 3 million inhabitants; (c) metros with fewer than
800,000 inhabitants. Larger metros increasingly concentrated new construction closer to downtown,
while smaller metros continued to build primarily at the urban fringe.
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Figure A6: Evolution of housing costs (monthly rent) as a nonparametric function of distance from
the CBD, measured as fraction of total distance to the urban edge (weighted by housing units). Each
panel shows the relationship for a different metro size group: (a) metros with more than 3 million
inhabitants in 1990; (b) metros with 800,000 to 3 million inhabitants; (c) metros with fewer than
800,000 inhabitants.
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Figure A7: Evolution of actual commuting costs from Census data by neighborhood type, weighted
by number of households. Each panel shows the evolution of observed commuting costs for a differ-
ent neighborhood type: (a) Downtown, (b) Residential, and (c) Fringe.
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Figure A8: Relationship between metro population and demand fundamentals: amenities in each
zone, and wages, for 1990 and 2020. Note how it can be observed that downtown amenities became
more attractive in big cities over time.
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Figure A9: Distribution of MSA-level housing expenditure shares (Average rent over average post-
tax wage income) in 1990 and 2020.
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Figure A10: The growth of urban areas in the United States, 1990-2020
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Appendix C Derivations from the model

Proof of Proposition 1. For any two locations r and r′ within the same neighborhood i, we have:

Vim(ω, r) =
(

wm − τNϕ
mrγ − Pim(r)

)
· Aim · νim(ω) (20)

Substituting the bid-rent condition Pim(r) = Pim(r′) + τNϕ
m(r′γ − rγ):

Vim(ω, r) =
(

wm − τNϕ
mrγ −

(
Pim(r′) + τNϕ

m(r′γ − rγ)
))

· Aim · νim(ω)

=
(

wm − τNϕ
mrγ − Pim(r′)− τNϕ

mr′γ + τNϕ
mrγ

)
· Aim · νim(ω)

=
(

wm − Pim(r′)− τNϕ
mr′γ

)
· Aim · νim(ω)

= Vim(ω, r′)

Therefore, utility is constant across all locations within the neighborhood.

Proof of Proposition 2. (i) The Fringe-Rural Boundary (rFm): At the city’s edge, land is converted

from rural use, which has an opportunity cost normalized to zero. For developers to be willing

to build, the profit from fringe development must be non-negative. The boundary rFm is where

profit is exactly zero: ΠFm(rFm) = DensFm(PFm(rFm)− cFm) = 0. Since DensFm > 0, this implies

PFm(rFm) = cFm.

(ii) The Residential-Fringe Boundary (rRm): Developers are indifferent between residential

and fringe use at rRm, so their profits are equal:

DensRm (PRm(rRm)− cRm) = DensFm (PFm(rRm)− cFm)

Rearranging to solve for PRm(rRm) gives:

PRm(rRm) = cRm +
DensFm
DensRm

(PFm(rRm)− cFm)

From the bid-rent condition (equation 4), we can express the fringe price at rRm in terms of the

price at rFm:

PFm(rRm) = PFm(rFm) + τNϕ
m
(
rγ

Fm − rγ
Rm
)

Substitute PFm(rFm) = cFm from part (i) yields:

PFm(rRm) = cFm + τNϕ
m
(
rγ

Fm − rγ
Rm
)
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Plugging this back into the expression for PRm(rRm):

PRm(rRm) = cRm +
DensFm
DensRm

([
cFm + τNϕ

m
(
rγ

Fm − rγ
Rm
)]

− cFm

)

The fringe construction costs, cFm, cancel, yielding the expression in the proposition.

(iii) The Downtown-Residential Boundary (rDm): At rDm, the profit from downtown devel-

opment equals the profit from residential development: ΠDm(rDm) = ΠRm(rDm). Substituting

the profit functions gives:

ηDm
ηDm + 1

ε
−1/ηDm
Dm PDm(rDm)

1+1/ηDm − cDm = DensRm (PRm(rDm)− cRm)

The right-hand side, ΠRm(rDm), represents the value of land for residential use at this boundary.

We can express it in terms of model primitives by linking prices across boundaries. First, using

the bid-rent condition (equation 4), we link PRm(rDm) to PRm(rRm):

PRm(rDm) = PRm(rRm) + τNϕ
m
(
rγ

Rm − rγ
Dm
)

Substitute the expression for PRm(rRm) from part (ii):

PRm(rDm) =

[
cRm +

DensFm
DensRm

τNϕ
m
(
rγ

Fm − rγ
Rm
)]

+ τNϕ
m
(
rγ

Rm − rγ
Dm
)

Now substitute this into the residential profit term ΠRm(rDm) = DensRm(PRm(rDm)− cRm):

ΠRm(rDm) = DensRm

([
cRm +

DensFm
DensRm

τNϕ
m
(
rγ

Fm − rγ
Rm
)
+ τNϕ

m
(
rγ

Rm − rγ
Dm
)]

− cRm

)

The residential construction costs, cRm, cancel. Distributing DensRm gives the total land value at

rDm:

ΠRm(rDm) = DensFmτNϕ
m
(
rγ

Fm − rγ
Rm
)
+ DensRmτNϕ

m
(
rγ

Rm − rγ
Dm
)

Substituting this back into the indifference condition:

ηDm
ηDm + 1

ε
−1/ηDm
Dm PDm(rDm)

ηDm+1
ηDm − cDm = τNϕ

m
[
DensFm

(
rγ

Fm − rγ
Rm
)
+ DensRm

(
rγ

Rm − rγ
Dm
)]

Finally, solving for PDm(rDm) by isolating the term and raising both sides to the appropriate

power gives the expression in the proposition.
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Appendix D Computational Algorithms

D.1 Model Inversion to Recover Amenities

To recover the unobserved neighborhood-level amenities, we invert the model. This procedure

takes as given the full set of model parameters {τ, ϕ, γ, θ, ψ, cDm, cRm, cFm, DensRm, DensFm, εDm, ηDm},

the observed data on population allocations {Ndata
im } and neighborhood boundaries {rdata

Dm , rdata
Rm , rdata

Fm },

and the metro-level fundamentals, specifically the set of wages {wm} and developable land arcs

{αm}. The algorithm finds the unique vector of amenities, {Aim}, that ensures the model’s pre-

dicted household location choices are perfectly consistent with the observed choices in the data.

This is accomplished using a contraction mapping algorithm that iteratively adjusts an initial

guess for the amenities until the model’s implied population shares converge to the observed

population shares.

The algorithm proceeds as follows:

1. Initialization. We start with the given inputs. From the observed populations Ndata
im , we

compute the observed population shares, πdata
im = Ndata

im / ∑j,n Ndata
jn , and the observed metro-

level populations, Ndata
m = ∑i Ndata

im . We make an initial guess for the vector of amenities,

A(0)
im , typically by setting A(0)

im = 1 for all i, m. A tolerance level ϵ and a damping parameter

λ ∈ (0, 1] are set for the iterative procedure.

2. Iterative Loop. For each iteration k = 0, 1, 2, . . . :

(a) Using the observed boundaries rdata
im and metro populations Ndata

m , we compute the refer-

ence housing prices P̂data
im and commuting costs τ̂data

im for each neighborhood, following

the characterization in Proposition 2. These values are treated as fixed throughout the

inversion.

(b) We combine these values with the current amenity guess A(k)
im to calculate the mean

utility component for each choice:

δ
(k)
im =

(
wm − τ̂data

im − P̂data
im

)
· A(k)

im

(c) Using the vector of mean utilities {δ
(k)
im }, we compute the model’s implied choice prob-

abilities, π
(k)
im , according to the GEV structure in Equation 6.

(d) We check for convergence by comparing the model-implied shares with the data. If

maxi,m |π(k)
im − πdata

im | < ϵ, the algorithm has converged, and the solution is A∗
im = A(k)

im .
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(e) If convergence is not achieved, we update the amenity guess using the following rule:

A(k+1)
im = A(k)

im ·
(

πdata
im

π
(k)
im

)λ

This update increases the amenity guess for locations that are more popular in the

data than predicted by the model (and vice-versa), ensuring that the algorithm moves

towards the true values. The loop then proceeds to iteration k + 1.

D.2 Numerical Solution Algorithm

I solve the spatial equilibrium system using a trust-region quasi-Newton method operating in

log-population space. The key innovation is exploiting a monotonic mapping between housing

quantities and neighborhood boundaries that allows me to reformulate the equilibrium problem

in terms of populations rather than radii directly.

D.2.1 Population-to-Boundary Inversion

The model’s supply-side conditions establish a one-to-one mapping between housing quantities

{HDm, HRm, HFm} and neighborhood radii {rDm, rRm, rFm} for each metro area m. Given target

populations, I invert this mapping through the following procedure:

For the fixed-density Residential and Fringe rings, the relationship between housing stock

and radii is direct. The Residential ring occupies the annulus [rDm, rRm], so:

HRm = DensRm · αm

2

(
r2

Rm − r2
Dm

)
(21)

Given Htarget
Rm and a trial value for rDm, I can solve directly for rRm:

rRm =

√
r2

Dm +
2Htarget

Rm
DensRm · αm

(22)

and analogously for rFm given rRm.

The Downtown radius rDm is determined by matching the Downtown housing target Htarget
Dm

through bisection. For each trial rDm:

1. Compute rRm and rFm from the ring area formulas above

2. Evaluate the implied Downtown housing stock by solving an inner fixed-point problem for
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metro population, which yields:

HDm(rDm) = αm

∫ rDm

0

(
PDm(r)

εDm

)1/ηDm

r dr (23)

where PDm(r) = PDm(rDm) + τNϕ
m(r

γ
Dm − rγ) from the bid-rent condition in equation (4),

and PDm(rDm) is given by equation (14)

3. Update the bisection bounds on rDm based on whether HDm(rDm) exceeds or falls short of

Htarget
Dm

This procedure converges rapidly because the mapping from rDm to HDm is monotonic:

larger Downtown radii necessarily produce more Downtown housing.

D.2.2 Quasi-Newton Solver in Log-Population Space

I reformulate the equilibrium conditions as a rootfinding problem in the log-population vector

z ∈ R3M, where z = log(H) stacks [log HD1, log HR1, log HF1, . . . , log HDM, log HRM, log HFM].

The residual function is:

F(z) = log Hsupply(z)− log Hdemand(z) (24)

where Hsupply(z) is obtained by (i) inverting exp(z) to radii via the procedure above, (ii) comput-

ing supply at those radii through equations (14)–(??) and the integral in the second step above,

and Hdemand(z) comes from the nested logit choice probabilities in equation (6) multiplied by

total population N.

The solver minimizes ∥F(z)∥ using a trust-region method with rank-one Jacobian updates.

The initial Jacobian is computed via parallel finite differences, exploiting the structure that per-

turbing metro m’s populations only requires re-solving that metro’s boundary inversion. Between

Jacobian rebuilds, I update the approximate Jacobian using a quasi-Newton formula:

Jk+1 = Jk +
(Fk+1 − Fk − Jksk)sT

k
sT

k sk
(25)

where sk = zk+1 − zk is the accepted step. The dogleg trust-region method combines a steepest

descent direction with a Newton step, with the trust region radius adjusted based on the ratio of

actual to predicted reduction in ∥F∥2.

Working in log-population space rather than log-radius space offers two advantages: (1) the

population targets directly correspond to the equilibrium conditions we wish to satisfy, avoiding

the need to differentiate through the complex supply integral, and (2) the monotonic population-
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boundary mapping ensures that the inversion step is always well-defined, preventing the numer-

ical instabilities that can arise when radii become mis-ordered.

Appendix E Model Fit
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Figure A11: Model fit for average distance to CBD. Each point represents a metro area, comparing
the observed average distance to the central business district with the model-predicted value. The
size of each point is proportional to the metro’s number of households. Some small metros have
a bad fit because the MSA contains multiple small urban areas that are not well captured by the
monocentric model.
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Figure A12: Fit between model-predicted and observed commuting times. Each point represents
a metro-zone-year observation. The model’s predicted commuting times (based on the the zones’
boundaries, calibrated τ parameter and metro-specific congestion) are plotted against actual com-
muting times as measured in tract-level Census and ACS data.
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Figure A13: Fit between model-implied changes in cim due to the growth in neighborhood bound-
aries, and the true growth in cim as inverted from the data. Each point is a metro-neighborhood-year
observation. As expected, there is a high correlation, but the slope is less than one: neighborhoods
with high levels of growth tend to have positive unobserved supply shocks.
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Appendix F De-regulation counterfactuals

F.1 Reduced-form model without within-metro geography

This appendix presents a reduced-form version of the model without within-metro geography.

Each metro m ∈ M is a single alternative with one housing market and one price pm. Households

choose across metros and a rural outside option; housing is supplied by competitive developers

with an inverse supply elasticity ηm.

F.1.1 Households

There is a population N of identical households indexed by ω, who choose a location among the

set of metros M or a rural outside option. The deterministic component of indirect utility for

metro m is

vm(pm) =
(
wm − τm − pm

)
Am, (26)

where wm is the wage, τm is a fixed commuting cost, pm is the metro housing price, and Am is an

amenity shifter.

Idiosyncratic tastes are drawn from a GEV structure that delivers across-metro substitution

parameter ψ > 0. Let vR denote the deterministic value of the rural option. The resulting choice

probabilities are

πm|Urban =
vm(pm)ψ

∑k∈M vk(pk)
ψ , (27)

πUrban =
∑k∈M vk(pk)

ψ

∑k∈M vk(pk)
ψ + vψ

R

, (28)

πm = πm|Urban πUrban =
vm(pm)ψ

∑k∈M vk(pk)
ψ + vψ

R

. (29)

Demand in metro m is then Nd
m = N πm.

F.1.2 Housing Supply in Each Metro

Housing is supplied by competitive developers. Around the previous-period baseline
(
qm,t, pm,t

)
,

the inverse supply is log-linear with (inverse) elasticity ηm > 0 and a supply shock εm:

pm(qm) = pm,t exp
(

ηm [log qm − log qm,t] + εm

)
. (30)
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(a) Boston (b) Los Angeles (c) New York

(d) San Diego (e) San Francisco (f) Seattle

(g) Washington DC

Figure A14: Housing supply elasticity schedules for the seven metro areas I de-regulate in counter-
factual simulations, as a function of neighborhood fraction developed. Each panel shows the true
elasticity schedule, and the counterfactual schedule under de-regulation.
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Equivalently, in levels,

pm(qm) = κm,t eεm qηm
m , κm,t ≡ pm,t q−ηm

m,t . (31)

F.1.3 Equilibrium

Given fundamentals {wm, τm, Am}m∈M, the rural value vR, population N, the previous-period

anchors {qm,t, pm,t}, and shocks {εm}, a (spatial) equilibrium is a vector {qm, pm}m∈M such that,

for every metro m:

(Supply) pm = pm,t exp
(

ηm [log qm − log qm,t] + εm

)
, (32)

(Demand) qm = N
vm(pm)ψ

∑k∈M vk(pk)
ψ + vψ

R

, (33)

with vm(pm) = (wm − τm − pm)Am. Equations (32)–(33) jointly determine prices {pm} and quan-

tities {qm} across all metros.
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(a) Effect of deregulation on housing quantities and population

Observed De-regulation

Households Households Additional Households
by 1990 by 2020 growth by 2020

(thousands) (thousands) 1990-2020 (thousands)

New York 6,786 8,270 -6.2% 8,178
Los Angeles 5,178 6,503 83.9% 7,615
Washington 2,414 3,581 11.7% 3,718
San Francisco 2,404 3,020 85.4% 3,546
Boston 2,129 2,686 -4.0% 2,664
Seattle 1,135 1,871 67.0% 2,364
San Diego 910 1,201 88.4% 1,458
Rest of cities 50,289 76,628 -4.0% 75,569
Rural areas 30,391 35,867 -24.7% 34,515

(b) Effect of deregulation on housing costs

Observed De-regulation

Avg. rent Avg. rent Additional Avg. rent
by 1990 by 2020 growth by 2020
(2017 $) (2017 $) 1990-2020 (2017 $)

New York 1,070 1,711 -5.2% 1,678
Los Angeles 1,171 1,932 -19.9% 1,781
Washington 1,094 1,748 -13.6% 1,659
San Francisco 1,245 2,375 -25.6% 2,086
Boston 1,051 1,567 -6.8% 1,532
Seattle 888 1,802 -34.1% 1,490
San Diego 1,131 2,097 -20.7% 1,897
Rest of cities 770 1,197 -4.6% 1,177
Rural areas — — — —

Table 4: Counterfactual results from relaxing zoning in seven cities with strict housing regulations in
the naive model. Zoning relaxation is simulated by setting metro-level supply elasticities to the 75th
percentile nationally, using aggregate supply elasticity estimates from Baum-Snow and Han (2024).
Panel (a) shows the effect on housing quantities, while panel (b) shows the effect on housing costs.
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